Thursday, April 4, 2019 6:44 pm

This package contains data associated with a proceedings paper (Chai et al., 2019) submitted to the 44th Workshop on Geothermal Reservoir Engineering. The Geophysical Model text file contains density, P- and S-wave seismic speeds on a 3D grid. The file has six columns and provides latitude (degree), longitude (degree), depth (km), P-wave speed (km/s), S-wave speed (km/s), and density (g/cm^3) at each grid point. The Interactive Geophysical Model API file is an interactive visualization of the 3D geophysical model. The visualization allows users to view depth slices and vertical profiles of the model side by side. The depth of the slices and the location of the profile can be changed.

Reference:
Chai, C., Maceira, M., Santos-Villalobos, H. J., and EGS Collab team, 2019, Subsurface Seismic Structure around the Sanford Underground Research Facility, in PROCEEDINGS, 44th Workshop on Geothermal Reservoir Engineering, edited, Stanford University, Stanford, California. This file is an interactive visualization of the 3D geophysical model. The visualization allows users to view depth slices and vertical profiles of the model side by side. The depth of the slices and the location of the profile can be changed.

Media file
Thursday, April 4, 2019 6:44 pm

As part of the geophysical characterization suite for the first EGS Collab tesbed, here are the baseline cross-well seismic data and resultant models. The campaign seismic data have been organized, concatenated with geometry and compressional (P-) & and shear (S-) wave picks, and submitted as SGY files. P-wave data were collected and analyzed in both 2D and 3D, while S-wave data were collected and analyzed in 2D only. Inversion models are provided as point volumes; the volumes have been culled to include only the points within source/receiver array coverage. The full models space volumes are also included, if relevant. An AGU 2018 poster by Linneman et al. is included that provides visualizations/descriptions of the cross-well seismic characterization method, elastic moduli calculations, and images of model inversion results. SGY files containing P-wave picks

Media file
Thursday, April 4, 2019 6:40 pm

Core logs from the EGS Collab project Experiment 1 for the stimulation (Injection) well (E1-I), the Production well (E1-P), and monitoring wells (E1-OT, E1-OB, E1-PST, E1-PSB, E1-PDT, and E1-PDB) on the 4850 Level of SURF (the Sanford Underground Research Facility), single PDF file, 5-ft run intervals. In the monitoring well IDs, "O" indicates that the well is orthogonal to the anticipated fracture plane, "P" indicates that the well is parallel to the anticipated fracture plane, "S" indicates a shallow well, "D" indicates a deep well, "T" refers to top, and "B" refers to bottom.

Logs include: experiment number; borehole ID; depth interval; run number; final packed core box number; scribe line (yes/no; red-on-right convention); logging dates; logger initials; as well as sketches of core foliation, folding, and fracturing with additional details and notes on other features of interest.
Core log for EGS Collab Experiment 1 Parallel Deep Bottom (E1-PDB) well. Logged from 0 to 198 ft.

Media file
Thursday, April 4, 2019 6:40 pm

Core logs from the EGS Collab project Experiment 1 for the stimulation (Injection) well (E1-I), the Production well (E1-P), and monitoring wells (E1-OT, E1-OB, E1-PST, E1-PSB, E1-PDT, and E1-PDB) on the 4850 Level of SURF (the Sanford Underground Research Facility), single PDF file, 5-ft run intervals. In the monitoring well IDs, "O" indicates that the well is orthogonal to the anticipated fracture plane, "P" indicates that the well is parallel to the anticipated fracture plane, "S" indicates a shallow well, "D" indicates a deep well, "T" refers to top, and "B" refers to bottom.

Logs include: experiment number; borehole ID; depth interval; run number; final packed core box number; scribe line (yes/no; red-on-right convention); logging dates; logger initials; as well as sketches of core foliation, folding, and fracturing with additional details and notes on other features of interest.
Core log for EGS Collab Experiment 1 Parallel Shallow Bottom (E1-PSB) well. Logged from 0 to 197 ft.

Media file
Thursday, April 4, 2019 6:40 pm

Core logs from the EGS Collab project Experiment 1 for the stimulation (Injection) well (E1-I), the Production well (E1-P), and monitoring wells (E1-OT, E1-OB, E1-PST, E1-PSB, E1-PDT, and E1-PDB) on the 4850 Level of SURF (the Sanford Underground Research Facility), single PDF file, 5-ft run intervals. In the monitoring well IDs, "O" indicates that the well is orthogonal to the anticipated fracture plane, "P" indicates that the well is parallel to the anticipated fracture plane, "S" indicates a shallow well, "D" indicates a deep well, "T" refers to top, and "B" refers to bottom.

Logs include: experiment number; borehole ID; depth interval; run number; final packed core box number; scribe line (yes/no; red-on-right convention); logging dates; logger initials; as well as sketches of core foliation, folding, and fracturing with additional details and notes on other features of interest.
Core photos for EGS Collab Experiment 1 Orthogonal Bottom (E1-OB) well. Logged from 0 to 197 ft.

Media file
Thursday, April 4, 2019 6:40 pm

Core logs from the EGS Collab project Experiment 1 for the stimulation (Injection) well (E1-I), the Production well (E1-P), and monitoring wells (E1-OT, E1-OB, E1-PST, E1-PSB, E1-PDT, and E1-PDB) on the 4850 Level of SURF (the Sanford Underground Research Facility), single PDF file, 5-ft run intervals. In the monitoring well IDs, "O" indicates that the well is orthogonal to the anticipated fracture plane, "P" indicates that the well is parallel to the anticipated fracture plane, "S" indicates a shallow well, "D" indicates a deep well, "T" refers to top, and "B" refers to bottom.

Logs include: experiment number; borehole ID; depth interval; run number; final packed core box number; scribe line (yes/no; red-on-right convention); logging dates; logger initials; as well as sketches of core foliation, folding, and fracturing with additional details and notes on other features of interest.
Core photos for EGS Collab Experiment 1 Parallel Deep Bottom (E1-PDB) well. Logged from 0 to 198 ft.

Media file
Thursday, April 4, 2019 6:40 pm

Core logs from the EGS Collab project Experiment 1 for the stimulation (Injection) well (E1-I), the Production well (E1-P), and monitoring wells (E1-OT, E1-OB, E1-PST, E1-PSB, E1-PDT, and E1-PDB) on the 4850 Level of SURF (the Sanford Underground Research Facility), single PDF file, 5-ft run intervals. In the monitoring well IDs, "O" indicates that the well is orthogonal to the anticipated fracture plane, "P" indicates that the well is parallel to the anticipated fracture plane, "S" indicates a shallow well, "D" indicates a deep well, "T" refers to top, and "B" refers to bottom.

Logs include: experiment number; borehole ID; depth interval; run number; final packed core box number; scribe line (yes/no; red-on-right convention); logging dates; logger initials; as well as sketches of core foliation, folding, and fracturing with additional details and notes on other features of interest.
Core photos for EGS Collab Experiment 1 Parallel Shallow Top (E1-PST) well. Logged from 0 to 141 ft.

Media file
Thursday, April 4, 2019 6:40 pm

Core logs from the EGS Collab project Experiment 1 for the stimulation (Injection) well (E1-I), the Production well (E1-P), and monitoring wells (E1-OT, E1-OB, E1-PST, E1-PSB, E1-PDT, and E1-PDB) on the 4850 Level of SURF (the Sanford Underground Research Facility), single PDF file, 5-ft run intervals. In the monitoring well IDs, "O" indicates that the well is orthogonal to the anticipated fracture plane, "P" indicates that the well is parallel to the anticipated fracture plane, "S" indicates a shallow well, "D" indicates a deep well, "T" refers to top, and "B" refers to bottom.

Logs include: experiment number; borehole ID; depth interval; run number; final packed core box number; scribe line (yes/no; red-on-right convention); logging dates; logger initials; as well as sketches of core foliation, folding, and fracturing with additional details and notes on other features of interest.
Core photos for EGS Collab Experiment 1 Injection (E1-I) well.

Media file
Thursday, April 4, 2019 6:40 pm

Core logs from the EGS Collab project Experiment 1 for the stimulation (Injection) well (E1-I), the Production well (E1-P), and monitoring wells (E1-OT, E1-OB, E1-PST, E1-PSB, E1-PDT, and E1-PDB) on the 4850 Level of SURF (the Sanford Underground Research Facility), single PDF file, 5-ft run intervals. In the monitoring well IDs, "O" indicates that the well is orthogonal to the anticipated fracture plane, "P" indicates that the well is parallel to the anticipated fracture plane, "S" indicates a shallow well, "D" indicates a deep well, "T" refers to top, and "B" refers to bottom.

Logs include: experiment number; borehole ID; depth interval; run number; final packed core box number; scribe line (yes/no; red-on-right convention); logging dates; logger initials; as well as sketches of core foliation, folding, and fracturing with additional details and notes on other features of interest.
Core photos for EGS Collab Experiment 1 Parallel Shallow Bottom (E1-PSB) well. Logged from 0 to 197 ft.

Media file
Thursday, April 4, 2019 6:40 pm

Core logs from the EGS Collab project Experiment 1 for the stimulation (Injection) well (E1-I), the Production well (E1-P), and monitoring wells (E1-OT, E1-OB, E1-PST, E1-PSB, E1-PDT, and E1-PDB) on the 4850 Level of SURF (the Sanford Underground Research Facility), single PDF file, 5-ft run intervals. In the monitoring well IDs, "O" indicates that the well is orthogonal to the anticipated fracture plane, "P" indicates that the well is parallel to the anticipated fracture plane, "S" indicates a shallow well, "D" indicates a deep well, "T" refers to top, and "B" refers to bottom.

Logs include: experiment number; borehole ID; depth interval; run number; final packed core box number; scribe line (yes/no; red-on-right convention); logging dates; logger initials; as well as sketches of core foliation, folding, and fracturing with additional details and notes on other features of interest.
Core log for EGS Collab Experiment 1 Parallel Deep Top (E1-PDT) well. Logged from 0 to 197 ft.

Media file
Thursday, April 4, 2019 6:40 pm

Core logs from the EGS Collab project Experiment 1 for the stimulation (Injection) well (E1-I), the Production well (E1-P), and monitoring wells (E1-OT, E1-OB, E1-PST, E1-PSB, E1-PDT, and E1-PDB) on the 4850 Level of SURF (the Sanford Underground Research Facility), single PDF file, 5-ft run intervals. In the monitoring well IDs, "O" indicates that the well is orthogonal to the anticipated fracture plane, "P" indicates that the well is parallel to the anticipated fracture plane, "S" indicates a shallow well, "D" indicates a deep well, "T" refers to top, and "B" refers to bottom.

Logs include: experiment number; borehole ID; depth interval; run number; final packed core box number; scribe line (yes/no; red-on-right convention); logging dates; logger initials; as well as sketches of core foliation, folding, and fracturing with additional details and notes on other features of interest.
Core log for EGS Collab Experiment 1 Orthogonal Bottom (E1-OB) well. Logged from 0 to 197 ft.

Media file
Friday, March 22, 2019 7:28 pm

The PoroTomo team has completed inverse modeling of the three data sets (seismology, geodesy, and hydrology) individually, as described previously. The estimated values of the material properties are registered on a three-dimensional grid with a spacing of 25 meters between nodes. The material properties are listed an Excel file. Figures show planar slices in three sets:
horizontal slices in a planes normal to the vertical Z axis (Z normal), vertical slices in planes perpendicular to the dominant strike of the fault system (X normal), and vertical slices in planes parallel to the dominant strike of the fault system (Y normal).

The results agree on the following points. The material is unconsolidated and/or fractured, especially in the shallow layers. The structural trends follow the fault system in strike and dip. The geodetic measurements favor the hypothesis of thermal contraction. Temporal changes in pressure, subsidence rate, and seismic amplitude are associated with changes in pumping rates during the four stages of the deployment in 2016. The modeled hydraulic conductivity is high in fault damage zones. All the observations are consistent with the conceptual model: highly permeable conduits along faults channel fluids from shallow aquifers to the deep geothermal reservoir tapped by the production wells.
Horizontal slices in planes normal to PoroTomo Z axis. PDF format.

Media file
Friday, March 22, 2019 7:26 pm

The PoroTomo team has completed inverse modeling of the three data sets (seismology, geodesy, and hydrology) individually, as described previously. The estimated values of the material properties are registered on a three-dimensional grid with a spacing of 25 meters between nodes. The material properties are listed an Excel file. Figures show planar slices in three sets:
horizontal slices in a planes normal to the vertical Z axis (Z normal), vertical slices in planes perpendicular to the dominant strike of the fault system (X normal), and vertical slices in planes parallel to the dominant strike of the fault system (Y normal).

The results agree on the following points. The material is unconsolidated and/or fractured, especially in the shallow layers. The structural trends follow the fault system in strike and dip. The geodetic measurements favor the hypothesis of thermal contraction. Temporal changes in pressure, subsidence rate, and seismic amplitude are associated with changes in pumping rates during the four stages of the deployment in 2016. The modeled hydraulic conductivity is high in fault damage zones. All the observations are consistent with the conceptual model: highly permeable conduits along faults channel fluids from shallow aquifers to the deep geothermal reservoir tapped by the production wells.
Vertical slices in planes normal to PoroTomo X axis, thus perpendicular to the strike of the fault system. PDF format.

Media file
Friday, March 22, 2019 7:26 pm

The PoroTomo team has completed inverse modeling of the three data sets (seismology, geodesy, and hydrology) individually, as described previously. The estimated values of the material properties are registered on a three-dimensional grid with a spacing of 25 meters between nodes. The material properties are listed an Excel file. Figures show planar slices in three sets:
horizontal slices in a planes normal to the vertical Z axis (Z normal), vertical slices in planes perpendicular to the dominant strike of the fault system (X normal), and vertical slices in planes parallel to the dominant strike of the fault system (Y normal).

The results agree on the following points. The material is unconsolidated and/or fractured, especially in the shallow layers. The structural trends follow the fault system in strike and dip. The geodetic measurements favor the hypothesis of thermal contraction. Temporal changes in pressure, subsidence rate, and seismic amplitude are associated with changes in pumping rates during the four stages of the deployment in 2016. The modeled hydraulic conductivity is high in fault damage zones. All the observations are consistent with the conceptual model: highly permeable conduits along faults channel fluids from shallow aquifers to the deep geothermal reservoir tapped by the production wells.
Horizontal slices in planes normal to PoroTomo Z axis. JPG format.

Media file
Friday, March 22, 2019 7:25 pm

The PoroTomo team has completed inverse modeling of the three data sets (seismology, geodesy, and hydrology) individually, as described previously. The estimated values of the material properties are registered on a three-dimensional grid with a spacing of 25 meters between nodes. The material properties are listed an Excel file. Figures show planar slices in three sets:
horizontal slices in a planes normal to the vertical Z axis (Z normal), vertical slices in planes perpendicular to the dominant strike of the fault system (X normal), and vertical slices in planes parallel to the dominant strike of the fault system (Y normal).

The results agree on the following points. The material is unconsolidated and/or fractured, especially in the shallow layers. The structural trends follow the fault system in strike and dip. The geodetic measurements favor the hypothesis of thermal contraction. Temporal changes in pressure, subsidence rate, and seismic amplitude are associated with changes in pumping rates during the four stages of the deployment in 2016. The modeled hydraulic conductivity is high in fault damage zones. All the observations are consistent with the conceptual model: highly permeable conduits along faults channel fluids from shallow aquifers to the deep geothermal reservoir tapped by the production wells.
estimated values of the material properties are registered on a three-dimensional grid with a spacing of 25 meters between nodes. MATLAB format.

Media file

Pages