Thursday, May 7, 2020 4:35 pm

This submission contains slow strain rates summed to radians over 30 second intervals [rad/s] derived from horizontal distributed acoustic sensing measurements (DASH) of Brady geothermal field during PoroTomo deployment (2016-Mar-14 to 2016-Mar-26). There is one file corresponding to each day written in *.mat format for use with Matlab. The format for the binary Matlab .mat files are defined at: https://www.mathworks.com/help/pdf_doc/matlab/matfile_format.pdf.
One such file includes the following variables:
'flist': list of raw DASH files used in the summation
'time_tag_mdt': sample time tag in datetime format with hours given in 24-hr format (yyyy/MM/dd HH:mm:ss.SSSSSSS)
'time_tag_uts': sample time tag in Unix time
'strain_rate_summed_over30s_in_radians_per_second': slow strain rates summed over 30 second intervals in units rad/s
'sample_standard_deviation_in_radians_per_second': corresponding sample standard deviation of slow strain rates in units rad/s

The PoroTomo final technical report, raw DASH data, and software repository are also available through the links below. .mat file for slow strain rate DASH data for March 14, 2016 at Brady Hot Springs, Nevada

Media file
Thursday, May 7, 2020 4:35 pm

This data submission includes several data components that were used to develop a conceptual model and power capacity-estimates of two low-temperature geothermal resources that define geothermal prospect A at Hawthorne, Nevada. Data are sourced from a combination of legacy publicly-available data and more recent data acquisition conducted by the US Navy Geothermal Program Office (2008-2013) and the Great Basin Center for Geothermal Energy at the University of Nevada, Reno (2008-2010). Data sets include compiled fluid geochemistry data, down-hole temperature logs for wells in the vicinity of prospect A, 2 meter temperature survey data, temperature-spinner logs acquired in well HWAAD-2A, fracture picks from image log data acquired in wells HWAAD-2 and HWAAD-3, and XRD analyses on cuttings from wells HWAAD-2A and HWAAD-3. These data have been reviewed for errors and inconsistencies, but it is not guaranteed that some errors could still remain. The resource conceptual model and power capacity estimates are included in the final report to the US Department of Energy, and are presented in a manuscript by Ayling and Hinz (accepted: Geothermics). A link to the manuscript will be added to this dataset when published. Kelly Blake from the US Navy Geothermal Program Office conducted the fracture analysis. Results and methods are reported in Blake, K. (2011), HWAAD-2A and HWAAD-3: Fracture and Stress Analysis, Hawthorne Army Deport, Hawthorne, NV Initial Assessment. Internal Navy Geothermal Program Office Technical Report, 8p. WellCAD was used to analyze the HWAAD-2A and HWAAD-3 ABI43 image logs acquired in 2009 by Southwest Exploration Services LLC. Two lengths of borehole were imaged in HWAAD-2A: 495'-1500' (151-457 m) (top section) and 1500'-4722' ( 457-1439 m) (bottom section). One length of borehole was imaged in HWAAD-3, between ~1500 ft and 4000 ft (457-1219 meters). WellCAD was used to identify natural fractures and borehole induced structures. These fracture and structure picks were then transferred to a text file and analyzed in Matlab. The Matlab analysis provided the average fracture orientation and average principal stress orientations. Natural fractures and borehole induced structures were both identified in the image log. Only tensile fractures and petal-centerline fractures were identified, no breakouts.

Media file
Thursday, May 7, 2020 4:35 pm

The computed tomography (CT) facilities at the National Energy Technology Laboratory (NETL) Morgantown, West Virginia site were used to characterize core of the Tuscarora Sandstone from a vertical well in Preston County WV, the Preston-119 from a depth of 7,165 to 7,438 ft. The primary impetus of this work is a collaboration between West Virginia Geological and Economic Survey (WVGES) and NETL to characterize core from multiple wells to better understand the geologic framework of key stratigraphic units in West Virginia. As part of this effort, bulk scans of core were obtained from the Pres-119 well, provided by the WVGES. This report, and the associated scans generated, provide detailed datasets not typically available for researchers to analyze.

This dataset contains CT scan images collected from the cores obtained from Clay 513, Harrison 79, and Preston 119 wells. Additional processing of the CT scan data from Preston 119 well is performed to semi-quantitatively assess fracture volume. These results are summarized in figures, and spreadsheets.
Software Requirement Note:
Free software may be required to view some of the information provided. Software used for data analysis include ilastik, FIJI and ImageJ2.
Contains the files produced after segmentation in ilastik. They can be viewed in several image processing programs including ImageJ2 or FIJI. After importing the segmented tiff stack for a core section into one of the image processing programs you can view the volumes and calculate the percentages by following the instructions in the '% volume by CT calc' powerpoint. The background (air/outside) is subtracted and the percent volume of fractures can be determined for the entire sample. These segmentations and associated calculations were performed on entire scans (2 to 3 foot sections of core, one length of core box); these can be refined if a small subset is chosen. With a smaller subset, additional artifacts can be removed such as beam hardening and edge effects.

Media file
Thursday, May 7, 2020 4:35 pm

The U.S. Department of Energy's Enhanced Geothermal System (EGS) Collab project aims to improve our understanding of hydraulic stimulations in crystalline rock for enhanced geothermal energy production through execution of intensely monitored meso-scale experiments. The first experiment is being performed at the 4850 ft level of the Sanford Underground Research Facility (SURF), approximately 1.5 km below the surface at Lead, South Dakota.

Here we report on microseismic monitoring of repeated stimulation experiments and subsequent flow tests between two boreholes in the Poorman Formation. Stimulations were performed at several locations in the designated injection borehole at flow rates from 0.1 to 5 L/min over temporal durations from minutes to hours. Microseismic monitoring was performed using a dense 3D sensor array including two cemented hydrophone strings with 12 sensors at 1.75 m spacing accompanied by 18 3-C accelerometers, deployed in 6 monitoring boreholes, completely surrounding the stimulation region. Continuous records were obtained over a two-month period using a novel dual recording system consisting of a conventional 96 channel exploration seismograph and a high-performance 64 channel digitizer sampling sensors at 4 and 100 kHz respectively.

Using a standard STA/LTA triggering algorithm, we detected thousands of microseismic events with recorded energy in a frequency range generally above 3 kHz and up to 40 kHz. The locations of these events are consistent with creation of a hydraulic fracture and additional reactivation of pre-existing structures. Using manual pick refinement and double-difference relocation we are able to track the fracture growth to high precision. We estimate the times and locations of the fracture intersecting a monitoring and the production borehole using microseismic events. They are in excellent agreement with independent measurements using distributed temperature sensing, in-situ strain observations and measurements of conductivity changes. Microearthquake catalog

Media file
Thursday, May 7, 2020 4:35 pm

Utah FORGE phase 2C Native State Simulation zip contains the data used for the boundary conditions and subsequent native state simulation results obtained using the simulation code FALCON. Data are from the nodes of the simulation domain, with used a uniform 50m spacing over a 2500 X 2500 X 2750m domain approximately centered on the FORGE footprint. There is also a read me text file, that is included, containing metadata. The Reservoir Porosity and Upscale DFN Permeability zip contains the data used for the spatial distribution of the anisotropic permeability and porosity used in the native state simulation of the Utah FORGE site. Please contact Robert Podgorney at the Idaho National Laboratory with questions, robert.podgorney@inl.gov. There is also a read me text file included containing metadata. This file contains the data used for the spatial distribution of the anisotropic permeability and porosity used in the native state simulation of the Utah FORGE site. Please contact Robert Podgorney at the Idaho National Laboratory with questions, robert.podgorney@inl.gov. There is also a read me text file included containing metadata.

Media file
Thursday, May 7, 2020 4:35 pm

The EGS Collab project is developing ~10-20 m-scale field sites where fracture stimulation and flow models can be validated against controlled, small-scale, in-situ experiments. The first multi-well experimental site was established at the 4850 level in the Homestake Mine in Lead, South Dakota, where hydraulic fractures were created at an injection well drilled sub-horizontal from the drift. This file contains the second set of tracer data (also include the data uploaded previously, https://gdr.openei.org/submissions/1128) for the EGS Collab testbed. The tracer tests were conducted during October 2018 - November 2019. Injected tracers include DNA, C-dots (fluorescein nano particles), fluorescein, rhodamine-b, sodium chloride, lithium bromide and cesium iodine. The tracers have been detected in three flowing wells located about 7.5 to 9 meters away from the injection interval. The tracer breakthrough curves from these locations have been adjusted to account for the residence time in the injection and production tubing. The details about the tracer test can be found in Background and Methods of Tracer Tests (Mattson et al. (2019,a,b)) (also included in this package).

References
Mattson, E.D., Neupane, G., Plummer, M.A., Hawkins, A., Zhang, Y. and the EGS Collab Team 2019a. Preliminary Collab fracture characterization results from flow and tracer testing efforts. In Proceedings 44th Workshop on Geothermal Reservoir Engineering, edited, Stanford University, Stanford, California.
Mattson, E.D., Neupane, G., Hawkins, A., Burghardt, J., Ingraham, M., Plummer, M., and the EGS Collab Team, 2019b. Fracture tracer injection response to pressure
perturbations at an injection well. GRC Transactions, Vol. 43, 2019.
Neupane, Ghanashyam, Earl Mattson, Adam Hawkins, Mitchell Plummer, and Yuran Zhang. EGS Collab Testbed 1: Tracer data sets. No. 1128. DOE Geothermal Data Repository; Idaho National Laboratory, 2019. "Preliminary Collab Fracture Characterization Results from Flow and Tracer Testing Efforts" paper provides background information about the way these tracer tests were conducted.

Media file
Thursday, May 7, 2020 4:35 pm

The EGS Collab project is evaluating a site for Experiment 2 (hydraulic fracturing/shearing) at a depth of 1.25 km in the Sanford Underground Research Facility (SURF) on the 4100 Level. Two early test holes were drilled in an alcove (formerly known as Battery Charging Station) near Yates Shaft. Recently, we conducted a laser survey around the Testbed 2 to capture the details of the drift. This submission package includes the laser scanned drift map around the Testbed 2. The drift map data are presented in AutoCAD (*dxf), Leapfrog mesh (*.msh), and point cloud (*.csv) file formats.

Note: The coordinate system used is local Homestake Mine Coordinate (HMC) system from an old gold mine that was in operation for over 100 years. These files represent the geometry of the drift map in dxf file format (an AutoCAD mesh file). The units are in ft with local Homestake Mine Coordinate System.

Media file
Thursday, May 7, 2020 4:35 pm

Pressure, temperature, and flow data from open-hole, upper perforation, and lower perforation well stimulations gathered from various tools collected at well 58-32 during phase 2C. Description of data contained in excel file 58-32_OpenHoleStimulation.xlsx

Media file
Thursday, May 7, 2020 4:35 pm

This is a compilation of logs and data from Well 14-2 in the Roosevelt Hot Springs area in Utah. This well is also in the Utah FORGE study area.

Data includes: flowmeter survey (1989), geochemistry (1977-1978, 1977-1983), injection test data (1979, 1982), and spinner surveys (1989, 1985-1986).

Logs include: borehole compensated sonic and gamma ray (600'-6112'), borehole geometry and gamma ray (50'-4829'), caliper (0'-1720'), compensated neutron formation density (600'-6121'), induction electric (650'-6118'), mud log (79'-6100'), steam injection survey (50'-1175'), subsurface pressure surveys (0'-6087'), and subsurface temperature surveys (0'-6106').

The file is in a compressed .zip format and there is a data inventory table (Excel spreadsheet) in the root folder that is a guide to the data that is accessible in subfolders. Compilation of miscellaneous data (including geochemistry, injection test, spinner survey, flowmeter survey), pressure and temperature surveys, downhole geophysical logs, and other well logs. See data inventory spreadsheet for complete list.

Media file
Thursday, May 7, 2020 4:35 pm

To reduce the geothermal exploration risk, a feasibility study is performed for a deep direct-use system proposed at the West Virginia University (WVU) Morgantown campus. This study applies numerical simulations to investigate reservoir impedance and thermal production. Because of the great depth of the geothermal reservoir, few data are available to characterize reservoir features and properties. As a result, the study focuses on the following three aspects: 1. model choice for predicting reservoir impedance and thermal breakthrough: after investigating three potential models (one single permeability model and two dual permeability models) for flow through fractured rock, it is decided to use single permeability model for further analysis; 2. well placement (horizontal vs. vertical) options: horizontal well placement seems to be more robust to heterogeneity and the impedance is more acceptable; 3. Prediction uncertainty: the most influential parameters are identified using a First-Order-Second-Moment uncertainty propagation analysis, and the uncertain range of the model predictions is estimated by performing a Monte Carlo simulation. Heterogeneity has a large impact on the perdition, therefore, is considered in the predictive model and uncertainty analysis. The numerical model results and uncertainty analysis are used for economic analysis. The dataset submitted here support the described study. Manuscript is submitted to Geothermics, will be linked once paper is accepted. Contains output files used in the Monte Carlo simulation analysis. Results are used in generating Figure 8 in the manuscript and final report.
iTOUGH2 direct output file is heti_all.out. The middle part is extracted into OUTPUT file. Then a python code “stat.py” is used to summarize results into “plot.dat” for plotting.

Media file
Thursday, May 7, 2020 4:35 pm

The individual shapefiles in this dataset delineate estimated temperature contours (20, 40, 60, and 80 deg C) at a depth of 200 m in the Milford, Utah FORGE area. Contours were derived from 86 geothermal, gradient, and other wells drilled in the area since the mid-1970s with depths greater than 50 m. Conductive temperature profiles for wells less than 200 m were extrapolated to determine the temperature at the desired depth. Because 11 wells in the eastern section of the study area (in and around the Mineral Mountains) are at higher elevations compared to those closer to the center of the basin, temperature profiles were extrapolated to a constant elevation of 200 m below the 1830 m (6000 ft) a.s.l. datum (approximate elevation of alluvial fans at the base of the Mineral Mountains) to smooth the contours across the ridges and valleys. The individual shapefiles in this dataset delineate estimated temperature contours at 80degC, at a depth of 200 m, in the Milford, Utah FORGE area from February 2016.

Media file
Thursday, May 7, 2020 4:35 pm

This submission contains a number of data files with vertices of meshed/interpolated surfaces used in the Phase 2B earth model. Examples include land surface (based on 10-meter DEM), the granitoid-basin fill contact, several faults, and also interpolated temperature isosurfaces for 175 and 225 degrees C.

All data are georeferenced to UTM, zone 12N, NAD 83, NAVD 88. This file contains vertices of meshed/interpolated surfaces of the interpolated temperature isosurfaces for 175 degrees C used in the Phase 2B earth model. All data are georeferenced to UTM, zone 12N, NAD 83, NAVD 88.

Media file
Thursday, May 7, 2020 4:35 pm

Pressure, temperature, and flow data from open-hole, upper perforation, and lower perforation well stimulations gathered from various tools collected at well 58-32 during phase 2C. Well 58-32 Lower Perforation Stimulation Data during Extracted from April 21, 2019 - April 24, 2019 using Pason surface instruments to isolate pumping cycles for Lower Perforations, clipped to isolate pumping and flowback by GRG - contact at www.geothermalresourcegroup.com

Media file
Thursday, May 7, 2020 4:35 pm

This set of data contains raw and processed 2D and 3D seismic data from the Utah FORGE study area near Roosevelt Hot Springs. The zipped archives numbered from 1-100 to 1001-1122 contain 3D seismic uncorrelated shot gatherers SEG-Y files. The zipped archives numbered from 1-100C to 1001-1122C contain 3D seismic correlated shot gatherers SEG-Y files. Other data have intuitive names. This archive contains SEG-Y files 901-1122, from a total of 1122 SEG-Y files, from correlated shot gatherers. This is from a 3D seismic survey.

Media file
Thursday, May 7, 2020 4:35 pm

This dataset contains all the inputs used and output produced from the modified GEOPHIRES for the economic analysis of base case hybrid GDHC system, improved hybrid GDHC system with heat pump and for hot water GDHC.
Software required: Microsoft Notepad, Microsoft Excel and GEOPHIRES modified source code Results of LCOH analysis for preliminary analysis for hot water system.

Media file

Pages